Effect of Gas-Liquid Interface Capturing in UNDEX Numerical Simulation

LIU Qi, YANG Yuchen, ZHOU Zhangtao, CHU Dongyang

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 104-112.

PDF(12163 KB)
PDF(12163 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 104-112. DOI: 10.7643/ issn.1672-9242.2025.11.011
Ships and Marine Engineering Equipment

Effect of Gas-Liquid Interface Capturing in UNDEX Numerical Simulation

  • LIU Qi1,2, YANG Yuchen1,2, ZHOU Zhangtao1,2,3, CHU Dongyang1,2,3
Author information +
History +

Abstract

The work aims to study the underwater explosion (UNDEX) phenomena to enhance the damage and defense capabilities of future underwater equipment. A numerical simulation method for UNDEX was established, which employed the Finite Volume Method (FVM) to solve the inviscid multiphase Euler equations coupled with the Volume of Fluid (VOF) approach. As long as deviation between the empirical values in bubble radius and pulsation cycles was less than 5%, the method could accurately reproduce shock wave propagation dynamics. UNDEX cases with varying mesh densities, charge shapes, and water depths were calculated. The mesh requirements for large-depth explosion problems were determined, and the parameter effects on the VOF method's gas-liquid interface capture capability were analyzed. In conclusion, under large-depth conditions, the accuracy of the VOF-captured gas-liquid interface exhibits strong dependence on the initial charge geometry. The captured gas-liquid interface exhibits significant dissipation during the contraction phase of the second bubble cycle, which affects subsequent calculations. The capture effect of the gas-liquid interface gradually improves as the water depth decreases. Under the conditions of this paper, the captured overall shape of the bubble still has practical significance up to the third bubble cycle when the water depth is reduced to 200 meters.

Key words

underwater explosion / compressible multiphase flow / VOF method / bubble pulsation / gas-liquid interfaces capturing / FVM

Cite this article

Download Citations
LIU Qi, YANG Yuchen, ZHOU Zhangtao, CHU Dongyang. Effect of Gas-Liquid Interface Capturing in UNDEX Numerical Simulation[J]. Equipment Environmental Engineering. 2025, 22(11): 104-112 https://doi.org/10.7643/ issn.1672-9242.2025.11.011

References

[1] COLE R H.Underwater Explosions[M]. Princeton: Princeton University Press, 1948.
[2] SLIFKO J F. pressure-Pulse Characteristics of Deep Explosions as Functions of Depth and Range[R].AD-661804, 1967.
[3] XIAO P, YANG K D.Experimental Results for Peak Pressure and Sound Exposure Level in Deep-Sea Explosions[J]. Acoustics Australia, 2015, 43(2): 175-178.
[4] 马坤, 初哲, 王可慧, 等. 小当量炸药深水爆炸气泡脉动模拟实验[J]. 爆炸与冲击, 2015, 35(3): 320-325.
MA K, CHU Z, WANG K H, et al.Experimental Research on Bubble Pulse of Small Scale Charge Exploded under Simulated Deep Water[J]. Explosion and Shock Waves, 2015, 35(3): 320-325.
[5] 刘建湖, 汪俊, 杨云川, 等. 模拟深水环境爆炸试验装置: CN105571885A[P].2016-05-11.
LIU J H, WANG J, YANG Y C, et al. Test Device for Simulation Deep-water Environment Explosion : CN105571885A[P].2016-05-11.
[6] 郝轶, 周章涛, 张显丕. 球型密闭容器内水下爆炸载荷特性研究[J]. 兵工学报, 2015, 36(S1): 108-114.
HAO Y, ZHOU Z T, ZHANG X P.The Pressure Characteristics of High Pressure Spherical Closed Container under Underwater Explosion[J]. Acta Armamentarii, 2015, 36(S1): 108-114.
[7] GAO Y, WANG S S, ZHANG J X, et al.Effects of Underwater Explosion Depth on Shock Wave Overpressure and Energy[J]. Physics of Fluids, 2022, 34(3): 037108.
[8] 鲁忠宝, 南长江, 步相东, 等. 不同水深爆炸气泡运动特性仿真[J]. 鱼雷技术, 2009, 17(5): 15-18.
LU Z B, NAN C J, BU X D, et al.Simulation of Moving Features of Underwater Explosion Bubble in Different Water Depths[J]. Torpedo Technology, 2009, 17(5): 15-18.
[9] 梁浩哲, 杨莉, 张庆明. 深水条件下TNT炸药的爆炸特性[J]. 兵工学报, 2016, 37(S2): 241-245.
LIANG H Z, YANG L, ZHANG Q M.The Explosive Characteristics of TNT under Deep Water[J]. Acta Armamentarii, 2016, 37(S2): 241-245.
[10] 刘少尚. 高静水压下炸药爆炸载荷特性研究[D]. 沈阳: 沈阳理工大学, 2023: 1-92.
LIU S S.Study on Explosive Loading Characteristics under High Hydrostatic Pressure[D]. Shenyang: Shenyang Ligong University, 2023: 1-92.
[11] STERNBERG H M, HURWITZ H.Calculated Spherical Shock Waves Produced by Condensed Explosives in Air and Water[C]//6th International Detonation Symposium. White Oak: NSWC, 1971.
[12] CHISUM J E, SHIN Y.Multimaterial Eulerian and Coupled Lagrangian-Eulerian Finite Element Analysis of Underwater Shock Problems[R]. AD-A298206, 1995.
[13] BRETT J.Numerical Modelling of Shock Wave and Pressure Pulse Generation by Underwater Explosions[R]. AD-A352831, 1998.
[14] 胡毅亭, 贾宪振, 饶国宁, 等. 水下爆炸冲击波和气泡脉动的数值模拟研究[J]. 舰船科学技术, 2009, 31(2): 134-140.
HU Y T, JIA X Z, RAO G N, et al.Numerical Study of Underwater Explosion Shock Wave and Bubble Pulse[J]. Ship Science and Technology, 2009, 31(2): 134-140.
[15] LI J, RONG J L.Bubble and Free Surface Dynamics in Shallow Underwater Explosion[J]. Ocean Engineering, 2011, 38(17/18): 1861-1868.
[16] HUANGHUANGHAO-XIANG@163 COM, JIE, XIN, et al. Numerical Modeling of Underwater Explosion by One-Dimensional ANSYS-AUTODYN[J]. Journal of Energetic Materials, 2011, 29(4): 292-325.
[17] ZHANG A M, YANG W S, HUANG C, et al.Numerical Simulation of Column Charge Underwater Explosion Based on SPH and BEM Combination[J]. Computers & Fluids, 2013, 71: 169-178.
[18] HIRT C W, NICHOLS B D.Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[19] PILLIOD J E, PUCKETT E G.Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces[J]. Journal of Computational Physics, 2004, 199(2): 465-502.
[20] TREVINO T.Applications of Arbitrary Lagrangian Eulerian (ALE) Analysis Approach to Underwater and Air Explosion Problems[R]. AD-A384983, 2000.
[21] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础[M]. 北京: 北京理工大学出版社, 2015.
MEN J B, JIANG J W, WANG S Y.Fundamentals of Numerical Simulation for Explosion and Shock Problems[M]. Beijing: Beijing Insititute of Technology Press, 2015.
[22] ZHANG A M, LIU Y L.Improved Three-Dimensional Bubble Dynamics Model Based on Boundary Element Method[J]. Journal of Computational Physics, 2015, 294: 208-223.
[23] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究[J]. 工程力学, 2014, 31(8): 46-52.
LI X J, ZHANG C J, WANG X H, et al.Numerical Study on the Effect of Equations of State of Water on Underwater Explosions[J]. Engineering Mechanics, 2014, 31(8): 46-52.
[24] LEE E L, HORNIG H C, KURY J W, Adiabatic Expansion of High Explosivedetonation Products[R]. [s. l.]: UCRL Report, 1968.
[25] LIANG H Z, ZHANG Q M, LONG R R, et al.Pulsation Behavior of a Bubble Generated by a Deep Underwater Explosion[J]. AIP Advances, 2019, 9(2): 025108.
PDF(12163 KB)

Accesses

Citation

Detail

Sections
Recommended

/